Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.Б.19.01 ДИСЦИПЛИНЫ СПЕЦИАЛИЗАЦИИ
	Теория поля
на	именование дисциплины (модуля) в соответствии с учебным планом
Направлени	е подготовки / специальность
21.	.05.03 ТЕХНОЛОГИЯ ГЕОЛОГИЧЕСКОЙ РАЗВЕДКИ
Направленн	ость (профиль)
21.05.03 c	специализация N 1 "Геофизические методы поиска и разведки
	месторождений полезных ископаемых"
	•
Форма обуч	ения очная
F C	2010
Год набора	2018

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	_

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Цель преподавания дисциплины «Теория поля» заключается в формировании у студентов целостного представления о математическом аппарате, который используется для описания потенциальных и вихревых геофизических полей.

Теория всех геофизических методов основана на рассмотрении физических полей в трехмерном пространстве, в том числе с использованием ортогональных криволинейных координат (цилиндрических и сферических). Математический аппарат, используемый при этом, относится к разделам «Векторный анализ» и «Математические методы физики», которые в общем курсе математики технических специальностей вузов практически не затрагиваются. Дисциплина «Теория поля» предназначена ликвидировать этот пробел в фундаментальной подготовке студентов-геофизиков.

1.2 Задачи изучения дисциплины

В результате изучения дисциплины «Теория поля» студенты Должны знать:

- алгебру векторов;
- преобразования координат векторов при переходе из одной ортогональной системы координат в другую;
 - основные теоремы и операторы векторного анализа;
- методы описания потенциальных и вихревых векторных полей с использованием скалярных и векторных потенциалов;
- фундаментальные решения основных дифференциальных уравнений, описывающих потенциальные и вихревые геофизические поля.

Должны уметь:

- выполнять все алгебраические операции над векторами;
- вычислять координаты векторов в цилиндрической и сферической системах координат;
- вычислять градиент скалярного поля, дивергенцию и ротацию векторного поля в ортогональных системах координат;
- использовать для описания векторных полей интегральные теоремы Гаусса—Остроградского и Стокса;
- анализировать предельные случаи решений дифференциальных уравнений второго порядка, описывающих гравитационное, магнитостатическое и электромагнитные поля.

Владеть:

— навыками использования знаний, полученных при изучении дисциплины «Теория поля» для решения практических задач.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции Запланированные результаты обучения по дисциплине

ОК-1: способностью к абстрактному мышлению, анализу, синтезу

ПК-13: наличием высокой теоретической и математической подготовки, а также подготовки по теоретическим, методическим и алгоритмическим основам создания новейших технологических процессов геологической разведки, позволяющим быстро реализовывать научные достижения, использовать современный аппарат математического моделирования при решении прикладных научных задач

ПСК-1.1: способностью выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физико-математический аппарат

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1,42 (51)	
занятия лекционного типа	0,47 (17)	
практические занятия	0,94 (34)	
Самостоятельная работа обучающихся:	1,58 (57)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	
Промежуточная аттестация (Экзамен)	1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.								
№ п/п			Занятия		Занятия семинарского типа					
	Модули, темы (разделы) дисциплины	лекционного типа		Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		Самостоятельная работа, ак. час.		
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	
1. Be	екторная алгебра Ортогональные системы координат.									
	1. Понятие об ортогональном базисе. Линейные и нелинейные операции над векторами. Декартова, цилиндрическая и сферическая системы координат. Матрицы преобразований векторов из одной системы координат в другую. Элементы длины, площади и объема в ортогональных системах координат. Коэффициенты Ламэ.	2								
	2. Решение задач на тему «Векторная алгебра»			4						
	3.							10		

1. Производные по объему скалярного и векторного поля. Градиент скалярного поля, дивергенция и ротация векторного поля. Вычисление градиента, дивергенции и ротации в ортогональных системах координат. Геометрический смысл градиента, дивергенции и ротации. Потенциальные и вихревые (соленоидальные) векторные поля. Оператор Лапласа. Оператор Гамильтона (набла-оператор). Интегральные теоремы Гаусса-Остроградского и Стокса.	2							
2. Решение задач на тему «Векторный анализ»			4					
3.							10	
3. Гравитационное поле Земли. Гра-витационный по- тенция	ал. Уравн	е- ния Пу	ассона и	Лапласа	, их фун	- дамента	льные ре	-
1. Напряженность гравитационного поля (ускорение силы тяжести). Гравитационная теорема Гаусса. Гравитационный потенциал. Уравнения Пуассона и Лапласа для гравитационного потенциала. Фундаментальное решение уравнения Лапласа в сферических координатах. Сферические функции. Присоединенные функции Лежандра. Зональные, секториальные и тессеральные сферические гармоники. Формула (теорема) Мак-Кулло и ее следствия для Земли. Центробежное ускорение. Геопотенциал.	2							
2. Решение задач на тему «Гравитационное поле Земли»			6					
3.							10	
4. Гравитация и космология.	1							
1. Круговая и параболическая скорости. Гравитационный коллапс. Радиус сферы Шварцшильда. Основные космологические гипотезы. Красное смещение. Закон Хаббла.	2							

2. Решение задач на тему «Гравитация и космология»			4				
3.						10	
5. Магнитное поле Земли. Геомагнитный потенциал. Формализм Гаусса.							
1. Геомагнитный потенциал. Уравнение Лапласа для геомагнитного потенциала и его фундаментальное решение в сферических координатах. Формализм Гаусса. Гауссовы коэффициенты. Дипольная составляющая геомагнитного поля. Геомагнитный момент. Геомагнитные полюса.	2						
2. Решение задач на тему «Магнитное поле Земли»			6				
3.						7	
6. Уравнения Максвелла. Электромагнит-ные волны.							

	_				
1. Уравнения Максвелла в интегральной и в					
дифференциальной формах.					
Электромагнитные волны в вакууме. Волновое					
уравнение как следствие уравнений Максвелла.					
Поперечность электромагнитных волн. Вектор Умова-					
Пойнтинга. Плоская монохроматическая					
электромагнитная волна. Уравнение Гельмгольца для					
амплитуд. Волновое число, фазовая скорость, длина					
волны.					
Плоское электромагнитное поле в проводящих средах.	7				
Дисперсионное уравнение. Тангенс угла	/				
диэлектрических потерь, его физический смысл.					
Затухание плоских волн. Толщина скин-слоя. Фазовая					
скорость и длина волны в проводящих средах.					
Решение уравнений Максвелла для случая					
монохроматической плоской волны,					
распространяющейся в однородной проводящей среде.					
Импеданс однородной безграничной среды. Случай					
хорошо проводящей среды. Связь импеданса с					
электропроводностью среды.					
2. Решение задач на тему «Уравнения Максвелла и		10			
электромагнитные волны»		10			
3.				10	
, 7	17	2.4		_	
Всего	17	34		57	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Соловьев И. А., Шевелев В. В., Червяков А. В., Репин А. Ю. Практическое руководство к решению задач по высшей математике. Кратные интегралы, теория поля, теория функций комплексного переменного, обыкновенные дифференциальные уравнения: учебное пособие для вузов по направлениям 510000 "Естественные науки и математика", 550000 "Технические науки", 540000 "Педагогические науки" (Москва: Лань).
- 2. Гевель Л.М., Витвицкая В.Н. Теория поля: учеб. пособие(Красноярск: ГУЦМиЗ).
- 3. Блохинцев Д. И., Барбашов Б. М., Нестеренко В. В. Избранные труды: Т. 2. [Принципиальные вопросы квантовой механики. Квантовая теория поля и теория элементарных частиц. Выступления по общим вопросам науки]: в 2-х т.(Москва: Физматлит).
- 4. Гершанок В. А., Дергачев Н. И. Теория поля: учебник для студентов вузов (бакалавров), обучающихся по специальности 020302 "Геофизика" и направлению 020700 "Геология" профиль ("Геофизика")(Москва: Юрайт).
- 5. Николаев Н.Я., Захарова Е.Н., Кобзева Т.А., Хлебникова М.Ю. Векторный анализ и теория поля: Учеб. пособие для студ. технич. вузов (Самара: СГАСА).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. Стандартный пакет MicrosoftOffice.
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. Открытые интернет-ресурсы по планетарным геофизическим данным.
- 2. Научная электронная библиотека СФУ http://bik.sfu-kras.ru/

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Компьютерный класс, видеопроектор